
© 2008 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice Produced in cooperation

with:

HP Technology Forum & Expo 2008

OpenVMS Process
Internals

Wayne Sauer

President, PARSEC
Group

sauer@parsec.com

www.parsec.com

888-4-PARSEC

Topics

• OpenVMS internal symbol layout

• SDA commands

• Linked lists and hashing tables

• Virtual address space layout

• Process data structures

• Kernel threads

• SDA Lab

OpenVMS Symbol Type and
Layout
• There are basically three types of symbols

that you will encounter in OpenVMS

− Symbolic data structure offset – which is
used by adding the symbols value to the
base of the data structure to get to a
field in the data structure. For example

• PCB$L_PID

− Symbolic address of an OpenVMS system
routine – which is an address of a
routine within OpenVMS. For example:

• EXE$TIMEOUT

− Symbolic address of an OpenVMS executive
location. For example:

• SCH$GQ_COMQS

Introduction to SDA

• There are two ways of getting into
SDA. One is to examine the live
system, and the other is to analyzed
a crash dump file.

• To analyze a live system, issue the
following:
− $ analyze/system

• Need the CMKRNL privilege

• Since it is a live system, things change –
REMEMBER that

• To analyze a crash dump, issue the
following:
− $ analyze/crash dump-filespec

• Need read access to the dump file

• Everything is static

Introduction to SDA
(continued)

• Remember most ALL references are in
hexadecimal

• To specify decimal or octal, use the
following:

− ^d or ^o

• Other operators are

− @ before a reference is a level of
indirection

− +, -, *, / are arithmetic operators

• Order of precedence is the same as in basic
mathematics, including changing precedence
by enclosing the expression in parenthesis
()

• The period (.) is the current location
pointer

SDA Commands - processes

• SDA> show summary

• SDA> show summary/image

• SDA> set process/index=1e

• SDA> set process parsec

• SDA> show process/index=1e

SDA Commands - examine

• SDA> examine 20000

• SDA> examine 20000;20

• SDA> examine exe$timeout

• SDA> examine @sch$gl_pcbvec;(^d32*4)

• SDA> show stack/long @sch$gl_pcbvec;(^d32*4)

SDA Commands - evaluate

• SDA> evaluate sch$gl_pcbvec

• SDA> evaluate 64*2-44

• SDA> evaluate ^d72

• SDA> evaluate/time @exe$timeout

• SDA> examine/time exe$timeout

SDA Commands - symbols

• SDA> show sym pcb$l_pid

• SDA> show sym *pcbvec*

• SDA> show sym/all pcb$l_

• SDA> define mypcb 80EE0300

• SDA> undefine mypcb

SDA Commands – Automatically
created symbols

• There are a number of symbols
automatically created when you are
looking at a process or device

• For processes some of the symbols
are:

− PCB, JIB, PHD

• For devices, some of the symbols
are:

− UCB, DDT

SDA Commands - misc

• SDA> read sys$loadable_images:sysdef

• SDA> format pcb

• SDA> read/executive

• SDA> show executive

• SDA> map 810B8050

• SDA> show device

• SDA> show cluster

• SDA> show lan

SDA Extensions

• SDA has a number of extensions that
can be used

• To find out what SDA extensions
exist, issue the following command:

CLASS3> dir sys$library:*sda*

Directory SYS$COMMON:[SYSLIB]

CLUE$SDA.EXE;1 CNX$SDA.EXE;1 DECDTM$SDA.EXE;1 DKLOG$SDA.EXE;1

FC$SDA.EXE;1 IO$SDA.EXE;1 IPC$SDA.EXE;1 LAN$SDA.EXE;1

LCK$SDA.EXE;1 LNM$SDA.EXE;1 MTX$SDA.EXE;1 OCLA$SDA.EXE;1

PCS$SDA.EXE;1 PE$SDA.EXE;1 PTHREAD$SDA.EXE;1 PWIP$SDA.EXE;1

SDA$SHARE.EXE;1 SDA$SHARE.EXE_OLD;1 SDARMS$SHARE.EXE;1 SPL$SDA.EXE;1

TCPIP$SDA.EXE;1 TQE$SDA.EXE;1 TR$SDA.EXE;1 USB$SDA.EXE;1

XFC$SDA.EXE;

SDA Extensions (continued)

• To find out how to use them, issue the first
part of the SDA extension name at the SDA
prompt, for example to learn what commands
are available for the TQE$SDA.EXE SDA
extension, issue the TQE command at the SDA
prompt:

SDA> tqe

Timer Tracing Utility TQE commands:

TQE LOAD

TQE UNLOAD

TQE START TRACE [/BUFFER=pages]

TQE STOP TRACE

TQE SHOW TRACE [/SUMMARY]

[/IDENTIFICATION=pid]

[/ADDRESS=address]

SDA Extensions (continued)

• Probably the most used (and oldest) SDA
extension is CLUE. It has a separate help
library as follows:

SDA> clue
CLUE Alpha - Type CLUE HELP for further Information
CLUE commands: CALL_FRAME, CANASTA, CLEANUP, CONFIG, CRASH, DEBUG, ERRLOG, FRU,

HELP, HISTORY, KPB, MCHK, MEMORY, PROCESS, REGISTER, SCSI, SG,
STACK, SYSTEM, VCC, XQP

SDA> help clue

CLUE

Invokes the Crash Log Utility Extractor

Additional information available:

CALL_FRAME CLEANUP CONFIG CRASH ERRLOG FRU HISTORY
MCHK MEMORY PROCESS REGISTER SG STACK SYSTEM
VCC XQP

CLUE Subtopic?

Linked Lists

• OpenVMS stores data structures using
one of two ways: linked lists and
hashing tables.

• Linked lists consist of either a
forward pointer, or a combination of
forward and backward pointers.

• They are easy to implement since
finding an element in the list is as
simple as following the pointers
until you find the element that you
are searching for.

• For example:

Single and Double Link List
Layout

Flink

Element
x

Flink

Element
x

Flink

Element
x

Blink

SDA> validate queue sch$gq_hibwq
SDA> format @sch$gq_hibwq
SDA> format @.

Hashing Tables and Hashing
Algorithm

 Element
x

Hashing
Index

Pictorial Representation of a
Process

Alpha Virtual Address Space

00000000.00000000
to

00000000.3FFFFFFF

P0 Space

00000000.40000000
to

00000000.7FFFFFFF

P1 Space

00000000.80000000
to

000003FF.FFFFFFFF

P2 Space

Gap

FFFFFC00.00000000
to

FFFFFFFB.FFFFFFFF

P2 Space

FFFFFFFC.00000000
to

FFFFFFFD.7FFFFFFF

Page Table Space

FFFFFFFE.00000000
to

FFFFFFFF.7FFFFFFF

S2 Space

FFFFFFFF.80000000
to

FFFFFFFF.FFFFFFFF

S0/S1 Space

64-bit IVMS Address Space

FFFFFFFF.FFFFFFFF

E0000000.00000000

00000000.00000000

20000000.00000000

40000000.00000000

60000000.00000000

80000000.00000000

A0000000.00000000

C0000000.00000000

8TB Process space (P0, P1, P2, PT
space[0])

8TB System space (S0S1, S2, PT
space[15])

64-bit IVMS Address Space

FFFFFFFF.80000000

00000000.00000000
00000000.7FFFFFFF

00000000.80000000

System Space Base

Private Page Table (8GB)

Process
Private

Shared

Process Space Limit
Page Table Space [0]

DrawingDrawing
not to scalenot to scale

P2 (8TB - 10GB)

P0/P1 (2GB)

S0S1 (2GB)

S2 (8TB - 10GB)

Page Table Space [15]

V
R
N
X

=

0

V
R
N
X

=

1
5

P0 Space Layout
00000000.00000000

No Access (Guard) Page(s) (Defaults to 64KB)

Image

Shareable Images

Debugger

Unmapped

00000000.3FFFFFFFF

P1 Space
Unmapped

User Stack

CLI Data (symbol tables)
CLI Command Tables

CLI Image

File System Impure Area

Image I/O Segment (IMGIOCNT) (UREW)

Image I/O Segment (Exec)

Process I/O Segment (PIOPAGES)

Shareable Image Linkage Area (IMGREG_PAGES)

Channel Control Block Table (CHANNELCNT)
Window to PHD

Kernel Stack (initial thread) (KSTACKPAGES)

Executive Stack (initial thread/2 pages)

Supervisor Stack (initial thread/4 pages)

Exec Mode Data Area
NSA Audit Table

Privileged Library Dispatch Table

User Mode Event Data Area

KRP Lookaside List
Debug Context

Debug Data Area

Generic CLI Data Pages

Image Header Buffer

RMS Process Context Area
RMS Directory Cache

RMS IFAB/IRAB Tables

Image Activator Context

Image Activator Scratch

Per-Process Common Area

OpenVMS User Mode Data Page

Process Initial Thread Area

PKTA Vector

P1 Pointer Area
Kernel Mode Data Area

00000000.400000000

00000000.7FFFFFFFF

Execlet Code Region
Resident Image Code Region

Execlet Data Region
System Header

Error Log Allocation Buffers
Non-Paged Pool

Non-Paged Pool Expansion Area

Miscellaneous
Balance Slot Area

Paged Pool

SCB
HWRPB

Miscellaneous
Lock ID Table (Moves to S2 in V7.1)

Swapper Process Kernel Stack
Swapper Map
Miscellaneous

Executive Mode Data Page
Room For System Space Expansion

System Page Table Window

S0/S1 and S2 Space
PFN Database

Permanent System L1PT Mapping

Global Page Table

Resource Hash Table

Lock ID Table

FFFFFFFF.FFFFFFFF

S2 Space
FFFFFFFF.7FFFFFFF

S0/S1 Space
FFFFFFFF.80000000

SDA Commands

• SDA> show proc/proc/page

• SDA> show proc/page/p0

• SDA> show proc/page/p1

• SDA> show proc/page/p2

• SDA> show page

• SDA> show page/gpt

• SDA> show page/free

• SDA> show page/global

• SDA> clue memory/layout

• SDA> clue process/layout

• SDA> clue memory/lookaside

Process Data Structure Layout

SCH$GL_MAXPIX::
The size of the PCB vector
table (in entries). Derived
from the SYSGEN parameter
MAXPROCESSCNT

PHD

SCH$GL_PCBVEC

PCB

pcb$l_jib

pcb$l_phd

JIB

low word of the Internal
PID is the index into
the PCB vector table

Hardware
 PCB

pcb$l_phypcb

CTL$GL_PCB
points to current PCB
for this Process. This
pointer is only used in
Process context, if no
process context then
must use CPU$L_CURPCB
offset into the CPU
specific database.

Locating the PCB

• There are three ways of locating a
PCB

− You can locate your PCB via the symbol
CTL$GL_PCB, which is a symbol in your P1
space

− You can locate any processes PCB via the
PID by using the index portion of the
internal PID to index into the PCB vector
table

− You can locate the current PCB on any CPU
via the CPU database

• Finding your PCB is easy. We will
look at how to find the other PCBs

PID/EPID Layouts

PID LAYOUT

31|30 16|15 0

0 Sequence Number Process Index

EPID LAYOUT

31 30 29 28 14 13 21 20 5 4 0

0 Node
Seq #

Node Index Sequence # Process
Index

Sequence Vector Table

.

.

.

.

.

.

PCB POINTER Next Seq # Base Seq #

SCH$GL_PCBVEC::
SCH$GL_SEQVEC::

PROCESS INDEX

(Table entry == Longword) (Table entry == 2 Word)

• The internal PID is created by putting the
index of the PCB vector and the sequence
number together.

• The sequence number is incremented each
time the vector slot is reused

• SCH$GL_SEQVEC contains the address of the
PCB vector table

• The Extended PID is created by adding the
node’s cluster system ID to the PID.

Locating a PCB Via the PCB
Vector Table

SCH$GL_NULLPCB::

NULL

SWAPPER

ERRFMT

OPCOM

JOB_CONTROL

NULL

SYMBIONT_001

MILAMBER

NULL

PUG

ARUTHA

KULGAN

LAURIE

SCH$GL_PCBVEC::

PCB
OF

SWAPPER

PCB
OF

NULL
PROCESS

PCB
OF PUG

PROCESS

PCB
OF KULGAN

PROCESS

IPID Index

SDA Commands:
SDA> ex sch$gl_maxpix
SDA> evaluate sch$gl_pcbvec
SDA> examine sch$gl_pcbvec
SDA> examine @sch$gl_pcbvec;200
SDA> show stack/long @sch$gl_pcbvec;7f*4
SDA> examine @sch$gl_pcbvec+(ea*4)

Locating a PCB Via the CPU
Database

SMP$GL_CPU_DATA

CPU Number

Per CPU Database
For CPU 0

PCB for current process
on that CPU

CPU$L_CURPCB

The Process Control Block
• There is one PCB per Process and

it is allocated out of Non-Paged
pool

• The current PCB is pointed to by
CTL$GL_PCB if in process context.
If you are in system context, you
must locate the current process
by using the CPU$L_CURPCB offset
into the CPU specific database.

• All other PCB’s can be located by
using the low word of the
internal PID as an index into the
PCB vector table.

• The number of PCB’s you can have
on the system is determined by
the SYSGEN parameter
MAXPROCESSCNT

Forward link

Backward link

SizeType

Scheduling Information

Resource Quotas and Limits

Pointers to Other Data
Structures

Listheads

Autobiography

Job Information Block (JIB)

• A Job consists of a detached process and
all of its subprocesses

• The JIB tracks all shared resources
allotted to a job

• There is one JIB per job, ie. multiple
subprocesses will share one JIB

• The JIB is allocated from Non-paged pool
• The JIB is located via the PCB
• The JIB is the job specific data

structure

M TLFL/M TLBL M ount List
Entries for
Privately
M ounted
Volum es

JIB M TL
Detached
Process

PCB

PCB

Subprocess

Pooled quotas,
including:

EN QLM

TQ LM

BYTLM

Process Header (PHD)

• The PHD is located in the balance slot
area and there is one PHD per process

• The number of balance slots now is 2
minus MAXPROCESSCNT

• The PHD is the image specific data
structure and may be outswapped

• Although the PHD has a TYPE field, it is
not used. In order to format this data
structure in SDA you must include the
/type=PHD

Process Section Table

FREDs

Working Set List
(Located in S2 space in Alpha and I64 OpenVMS V8.2)

P0/P1/P2 Page Table Descriptions
More Accounting Statistics

HWPCB
Accounting Statistics

Offsets to Working Set List and Process Section Table

Hardware Privileged Context
Block

Stack Pointers

L1 Page Table PFN

Miscellaneous Registers

Floatpoint Registers

Canonical Kernel Stack
SP->

R8-R15

R29

(fill)

R0

R1

R16

R17-R28

(fill)

R2-R7

PC

PS

CALL_PAL SWPCTX
CALL_PAL REI

SDA Commands

• SDA> show proc/channel

• SDA> show proc/work

• SDA> show proc/proc

• SDA> show proc/lock

• SDA> show resource/lock=0D00033A

• SDA> show lock 24000140

Kernel Threads
• OpenVMS supplies the DECthreads run-time library, to support the

multithreading of an application. The DECthreads library is
implemented as user mode services.

$ define pthread_config “vp-count=4”

Where 4 is the number of kernel threads that you want.

• In order for the application to be multithreaded it must be linked
with the /THREAD_ENABLE qualifier.

• The MULTITHREAD SYSGEN parameter controls the availability of kernel
threads functions. With this parameter the following values can be
specified:

Value Description

0 Both Thread Manager upcalls and the creation of multiple kernel
threads are disabled.

1 Thread Manager upcalls are enabled; the creation of multiple
kernel threads is disabled.

2-16 Both Thread Manager upcalls and the creation of multiple (Alpha
kernel threads are enabled. The number specified only)
represents the maximum number of kernel threads that can be
created for a single process.

Kernel Thread Data Structures

To support Kernel threading, the
following data structures were
added:

• Kernel Thread Block (KTB)

• Floating point Register Execution Data
(FRED)

• Per Kernel Thread Area (PKTA)

Kernel Thread Data Structures

K S ta c kK S ta c k

E S ta c k

S S ta c k

U S ta c k

P K T A
D a ta

U S ta c k

S S ta c k

E S ta c k

K S ta c k

P K T A
D a ta

Thread 0
PK

TA
P H D

P C B

K T B

K T B V e c to r
T a b le

H W P C B
(F R E D)

F R E D

S 0 /S 1 S p a c e P 1 S p a c e

P C B $ L _ K T B V E C

K T B $ L _ F R E D

KTB Vector Table

PCB

PCB$L_INITIAL_KTB

PCB$L_KTBVEC

KTB

KTB
KTB Vector Table

Locating the KTB Using the
PID

IPID

idxseq # PCB Vector Table

KTB Vector Table

PCB

KTB

KTBSe
q

- B

as
e

Se
q

#

HP Technology Forum & Expo

Get Connected!
Training | Knowledge | Solutions

Questions?

Wayne Sauer
President, PARSEC Group
sauer@parsec.com
www.parsec.com
888-4-PARSEC

