OpenVMS Process
MERELS

Wayne Sauer

President, PARSEC
Group

HP Technology Forum & Expo 2008

© 2008 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice Produced in cooperation Encompdss i T U o
with:

I Topics

OpenVMS internal symbol layout
SDA commands

Linked lists and hashing tables
Virtual address space layout
Process data structures

Kernel threads

SDA Lab

llllll

OpenVMS Symbol Type and
Layout

There are basically three types of symbols
that you will encounter in OpenVMS

Symbolic data structure offset — which is
used by adding the symbols value to the
base of the data structure to get to a
fileld in the data structure. For example

PCB$L_PID

Symbolic address of an OpenVMS system
routine — which is an address of a
routine within OpenVMS. For example:

EXE$STIMEOUT

Symbolic address of an OpenVMS executive
location. For example:

SCH$GQ COMQS O]

nnnnnn

Introduction to SDA

There are two ways of getting into
SDA. One is to examine the live
system, and the other Is to analyzed
a crash dump file.

To analyze a live system, issue the
following:

$ analyze/system
Need the CMKRNL privilege

Since it is a live system, things change —
REMEMBER that

To analyze a crash dump, issue the
following:
$ analyze/crash dump-filespec

Need read access to the dump file -~
Everything is static cmvant

Introduction to SDA
(continued)

Remember most ALL references are In
hexadecimal

To specify decimal or octal, use the
following:

d or Mo
Other operators are

@ before a reference is a level of
indirection

+, -, *, [are arithmetic operators

Order of precedence is the same as in basic
mathematics, including changing precedence
by enclosing the expression in parenthesis

0

The period (.) is the current location S
pointer 3

I SDA Commands - processes

SDA> show sunmmary

SDA> show sunmary/ | mage
SDA> set process/ | ndex=1e
SDA> set process parsec
SDA> show process/ | ndex=1e

nnnnnn

I SDA Commands - examine

SDA> exam ne 20000

SDA> exam ne 20000; 20

SDA> exam ne exe$ti neout

SDA> exam ne @ch$gl _pcbvec; (*d32*4)

SDA> show st ack/ 1 ong @ch$gl _pcbvec; (*d32*4)

nnnnnn

I SDA Commands - evaluate

SDA> eval uate sch$gl pchvec
SDA> eval uate 64*2-44
SDA> eval uate ~d72

SDA> eval uate/tine @xe$ti meout
SDA> exam ne/tine exe$ti neout

nnnnnn

I SDA Commands - symbols

S

S
S
S
S

DA> show sym pchb$l _pid

DA> show syni al
DA> def i ne nypc

DA> undef i ne ny

DA> show sym *pcbvec*

pcbh$l
0 80EEO0300

nch

nnnnnn

I SDA Commands — Automatically
created symbols

There are a number of symbols
automatically created when you are
looking at a process or device

For processes some of the symbols
are:

PCB, JIB, PHD

For devices, some of the symbols
are:

UCB, DDT

nnnnnn

I SDA Commands - misc

SDA> read sys$l oadabl e | mages: sysdef
SDA> format pcb

SDA> r ead/ executi ve
SDA> show executi ve
SDA> map 810B8050

DA> show devi ce
DA> show cl ust er
DA> show | an

n

2

nnnnnn

SDA Extensions

SDA has a number of extensions that
can be used

To find out what SDA extensions
exist, issue the following command:

CLASS3> dir sys$library:*sda*
Directory SYS$COMMON:[SYSLIB]

CLUES$SDA.EXE;1 CNX$SDA.EXE;1 DECDTM$SDA.EXE;1 DKLOG$SDA.EXE;1
FC$SDA.EXE;1 IO$SDA.EXE;1 IPC$SDA.EXE;1 LAN$SDA.EXE;1
LCK$SDA.EXE;1 LNM$SDA.EXE;1 MTX$SDA.EXE;1 OCLAS$SDA.EXE;1
PCS$SDA.EXE;1 PE$SDA.EXE;1 PTHREADS$SDA.EXE;1 PWIP$SDA.EXE;1
SDA$SHARE.EXE;1 SDA$SHARE.EXE_OLD;1 SDARMS$SHARE.EXE;1 SPL$SDA.EXE;1
TCPIP$SDA.EXE;1 TQES$SDA.EXE;1l TR$SDA.EXE;1 USB$SDA.EXE;1
XFC$SDA.EXE;

SDA Extensions (continued)

To find out how to use them, issue the first

part of the SDA extension name at the SDA
prompt, for example to learn what commands
are available for the TQE$SDA.EXE SDA
extension, issue the TQE command at the SDA
prompt:

SDA> tge
Timer Tracing Utility TQE commands:

TQE LOAD
TQE UNLOAD

TQE START TRACE [/BUFFER=pages]
TQE STOP TRACE

TQE SHOW TRACE [[SUMMARY]
[/IDENTIFICATION=pid]

[[ADDRESS=address] i

nnnnnn

SDA Extensions (continued)

Probably the most used (and oldest) SDA
extension is CLUE. It has a separate help
library as follows:

SDA> clue

CLUE Alpha - Type CLUE HELP for further Information

CLUE commands: CALL_FRAME, CANASTA, CLEANUP, CONFIG, CRASH, DEBUG, ERRLOG, FRU,
HELP, HISTORY, KPB, MCHK, MEMORY, PROCESS, REGISTER, SCSI, SG,

STACK, SYSTEM, VCC, XQP
SDA> help clue

CLUE

Invokes the Crash Log Utility Extractor

Additional information available:

CALL_FRAME CLEANUP CONFIG CRASH ERRLOG FRU HISTORY
MCHK MEMORY PROCESS REGISTER SG STACK SYSTEM
VCC XQP

CLUE Subtopic? i
LR

I Li nked Lists

OpenVMS stores data structures using
one of two ways: linked lists and
hashing tables.

Linked lists consist of either a
forward pointer, or a combination of
forward and backward pointers.

They are easy to implement since
finding an element in the list Is as
simple as following the pointers
until you find the element that you
are searching for.

For example: O |

nnnnnn

Single and Double Link List
Layout

Flink) -]

eeeeeee

R el el el e

eeeeeee

SDA> validate queue sch$gqg_hibwq
SDA> format @sch$gq_hibwq
SDA> format @.

llllll

I Hashing Tables and Hashing
Algorithm

Hashing

eeeeeee

nnnnnn

Pictorial Representation of a
Process

nnnnnn

Alpha Virtual Address Space

00000000. 00000000 PO Space
to
00000000. 3FFFFFFF

00000000. 40000000 P1 Space
to
00000000. 7FFFFFFF

00000000. 80000000 P2 Space
OOOOO3F;fLFFFFFFF

I
FFFFFC00. 00000000 P2 Space
FFFFFFFéfLFFFFFFF
FFFFFFFC. 00000000 Page Tabl e Space
FFFFFFFS&?FFFFFFF
FFFFFFFE. 00000000 S2 Space
FFFFFFF;f;FFFFFFF
FFFFFFFF. 80000000 S0/ S1 Space

to
FFFFFFFF. FFFFFFFF

P
~

invemt

64-bit IVMS Address Space

00000000.00000000

20000000.00000000

40000000.00000000

60000000.00000000

80000000.00000000

A0000000.00000000

C0000000.00000000

EO0000000.00000000

FFFFFFFF.FFFFFFFF

8TB Process space (PO, P1, P2, PT

8TB System space (S0S1, S2, PT
space[15])

P
~

invemt

64-bit IVMS Address Space

Drawing
not to scale
00000000.00000000 PO /P 1 2 G B
00000000.7FFFFFFF () Process
00000000.80000000 Private

X Z23<

P2 (8TB - 10GB)

—

0 Process Space Limit

Page Table Space [0]
Private Page Table (8GB)

Page Table Space [15]

System Space Base
S2 (8TB - 10GB) V

é FFFFFFFF.80000000 Shared
| S0S1 (2GB) N

nnnnnn

PO Space Layout

00000000.00000000

No Access (QGuard) Page(s) (Defaults to 64KB)

00000000.3FFFFFFFF

| mage

Shar eabl e | mages

Debugger

Unmapped

P
i

invemt

00000000.400000000

00000000.7FFFFFFFF

Pl Space

Unmapped
User Stack
CLI Data (synbol tables)
CLI Command Tabl es
CLI | nmge
File System I npure Area
I mage 1/ 0O Segnent (1 M3 OCNT) (UREW
I mage 1/ 0O Segnent (Exec)
Process 1/ 0 Segnent (Pl OPAGES)

Shar eabl e 1 mage Linkage Area (I MGREG PAGES)
Channel Control Bl ock Tabl e (CHANNELCNT)
W ndow t o PHD
Kernel Stack (initial thread) (KSTACKPAGES)
Executive Stack (initial thread/2 pages)
Supervi sor Stack (initial thread/ 4 pages)
Exec Mode Data Area
NSA Audit Tabl e
Privileged Library Dispatch Tabl e
User Mode Event Data Area
KRP Lookasi de Li st
Debug Cont ext
Debug Data Area
Generic CLI Data Pages
| mmge Header Buffer
RMS Process Context Area
RMS Directory Cache
RVS | FAB/ | RAB Tabl es
| mage Activator Context
| mage Activator Scratch
Per - Process Common Ar ea
penVMS User Mode Dat a Page
Process lnitial Thread Area
PKTA Vect or
P1 Pointer Area
Kernel ©Mde Data Area

P
i

invemt

S0/S1 and S2 Space

PFN Dat abase
Per manent System L1PT Mappi ng
G obal Page Tabl e

S2 Space Resource Hash Tabl e
FFFFFFFF.7FFFFFFF Lock I D Tabl e

Execl et Code Region
Resi dent | mage Code Regi on
Execl et Data Region
Syst em Header
Error Log Allocation Buffers
Non- Paged Pool

Non- Paged Pool Expansi on Area

S0/S1 Space
FFFFFFFF.80000000

M scel | aneous
Bal ance Sl ot Area

Paged Pool

SCB
HWRPB
M scel | aneous
Lock I D Table (Mwves to S2 in V7.1)
Swapper Process Kernel Stack
Swapper Map

M scel | aneous

Executi ve Mbde Data Page
FFFFFFFF. FFFFFFFF Room For System Space Expansi on

System Page Tabl e W ndow

ey
~

invemt

I SDA Commands

SDA> show proc/ proc/ page
SDA> show pr oc/ page/ p0O
SDA> show proc/ page/ pl
SDA> show pr oc/ page/ p2
SDA> show page

SDA> show page/ gpt

SDA> show page/free
SDA> show page/ gl obal
SDA> cl ue nenory/ | ayout
SDA> cl ue process/ | ayout
SDA> cl ue nenory/| ookasi de

nnnnnn

SCH$GL_PCBVEC

low word of the Internal
PID is the index into
the PCB vector table

SCH$GL_MAXPIX::

Process Data Structure Layout

CTL$GL_PCB

points to current PCB

for this Process. This
pointer is only used in
Process context, if no
process context then

must use CPU$L_CURPCB
offset into the CPU
specific database.

The size of the PCB vector PCB
table (in entries). Derived ~
from the SYSGEN parameter pcbsl_jib
MAXPROCESSCNT
pcb$l_phd
pcb$l_phypcb
JIB

PHD

Hardware
PCB

-

K

invemt

I Locating the PCB

There are three ways of locating a
PCB

You can locate your PCB via the symbol
CTL$GL_PCB, which is a symbol in your P1
space

You can locate any processes PCB via the
PID by using the index portion of the
iInternal PID to index into the PCB vector
table

You can locate the current PCB on any CPU
via the CPU database

Finding your PCB is easy. We will
look at how to find the other PCBs 0|

nnnnnn

PID/EPID Layouts

PID LAYOUT
31| 30 16| 15
0 Sequence Number Process | ndex
EPID LAYOUT
31 30 29 28 14 13 21 20 4
0 Node Node | ndex Sequence # Process
Seq # I ndex

&
i

invemt

Seqguence Vector Table

— PROCESS INDEX —

SCH$GL_PCBVEC: : SCH$GL_ SEQVEC: :

A 4

PCB POINTER » Next Seq # | Base Seq #

(Table entry == Longword) (Table entry == 2 Word)

The internal PID is created b¥ putting the
Index of the PCB vector and the sequence
number together.

The sequence number is incremented each
time the vector slot is reused

SCH$GE. SEQVEC contains the address of the
PCB vector table

The Extended PID is created by adding the e
node’s cluster system ID to theyPID.)) |

nnnnnn

Locating a PCB Via the PCB

Vector Table

SCH$GL_NULLPCB:
SCH$GL_PCBVEC::
NULL —— ®

SWAPPER

ERRFMT —»

OPCOM —»

\{

JOB_CONTROL [— PCB

IPID Index NULL SWEF":PER

SYMBIONT_001 [—»

PCB
OF
NULL
PROCESS

MILAMBER >

NULL

PCB
OF PUG
PUG PROCESS

h 4

ARUTHA | —

KULGAN

LAURIE | —

SDA Commands:
SDA> ex sch$gl_maxpix
SDA> evaluate sch$gl_pcbvec
SDA> examine sch$gl pcbvec

PCB
OF KULGAN
PROCESS

SDA> examine @sch$gl _pcbvec;200
SDA> show stack/long @sch$gl_pcbvec;7f*4
SDA> examine @sch$gl_pcbvec+(ea*4)

iiii

Locating a PCB Via the CPU

Per CPU Database
SMP$GIL_CPU_DATA For CPU 0
CPU Number CPU$L_CURPCB
PCB for current process
on that CPU
o
o
o
o o
o
o
o
o 4 -
e

nnnnnn

The Process Control Block

Forward link

Backward link

Type

Size

Scheduling Information

Resource Quotas and Limits

Pointers to Other Data

Structures

Listheads

Autobiography

There is one PCB per Process and
It is allocated out of Non-Paged
pool

The current PCB is pointed to by
CTL$GL_PCB if in process context.
If you are in system context, you
must locate the current process

by using the CPU$L_CURPCB offset
Into the CPU specific database.

All other PCB’s can be located by
using the low word of the

Internal PID as an index into the
PCB vector table.

The number of PCB’s you can have
on the system is determined by

the SYSGEN parameter
MAXPROCESSCNT

nnnnnn

Job Information Block (JIB)

PCB

Detached
Process

JIB

Subprocess

MTLFL/MTLBL

Pooled quotas,
including:

ENQLM
TQLM
BYTLM

MTL

Mount List
Entries for
Privately

M ounted

Volumes

A Job consists of a detached process and

all of its subprocesses
The JIB tracks all shared resources

allotted to a job

There is one JIB per job, ie. multiple

subprocesses will share one JIB
The JIB is allocated from Non-paged pool
The JIB is located via the PCB
The JIB is the job specific data

structure

llllll

Process Header (PHD)

O fsets to Wrking Set List and Process Section Tabl e

Accounting Statistics

HWPCB

More Accounting Statistics

PO/ P1/ P2 Page Tabl e Descri ptions

Wor ki ng Set Li st
(Located in S2 space in Al pha and 164 OpenVMs V8. 2)

FREDs

Process Section Tabl e

The PHD is located in the balance slot
area and there is one PHD per process

The number of balance slots now Is 2
minus MAXPROCESSCNT

The PHD is the image specific data
structure and may be outswapped

Although the PHD has a TYPE field, it is
not used. In order to format this data

structure in SDA you must include the
[type=PHD

llllll

Hardware Privileged Context
Block

Canonical Kernel Stack
) SP- >
Stack Pointers RS- R15

R29

(fill)

L1 Page Tabl e PFN

M scel | aneous Regi sters

FI oat poi nt Regi sters R1

R16
R17- R28
(fill)
R2- R7
PC

PS

CALL_PAL SWPCTX
CALL_PAL REI

nnnnnn

I SDA Commands

N umwuumwmwow

DA> s
DA> s
DA> s
DA> s
DA> s

DA> S

10W
10W
10W
10W
10W

10W

or oc/ channel

or oc/ wor k

0r oc/ proc

or oc/ | ock

resour ce/ | ock=0D00033A
| ock 24000140

nnnnnn

Kernel Threads

OpenVMS supplies the DECthreads run-time library, to support the
multithreading of an application. The DECthreads library is
implemented as user mode services.

$ define pthread_config “vp-count=4"
Where 4 is the number of kernel threads that you want.

In order for the application to be multithreaded it must be linked
with the /THREAD_ ENABLE qualifier.

The MULTITHREAD SYSGEN parameter controls the availability of kernel
threa_gs éunctions. With this parameter the following values can be
specified:

Value Description
0 Both Thread Manager upcalls and the creation of multiple kernel
threads are disabled.
1 Thread Manager upcalls are enabled; the creation of multiple

kernel threads is disabled.

2-16 Both Thread Manager upcalls and the creation of multiple (Alpha
kernel threads are enabled. The number specified only)
represents the maximum number of kernel threads that can be
created for a single process.

&
~

invemt

I Kernel Thread Data Structures

To support Kernel threading, the
following data structures were

added:

Kernel Thread Block (KTB)

Floating point Register Execution Data
(FRED)

Per Kernel Thread Area (PKTA)

nnnnnn

S0/S1 Space P1 Space
PCB
PHD
PCBS$L_KTBVEC » K Stack
> E Stack
HW PCB
>
i (FRED) » S Stack
KTB V ector
» U Stack
Table » FRED
> — PKTA
D ata

KTB

KTB$L_FRED

Kernel Thread Data Structures

U Stack

K Stack

E Stack

S Stack

PKTA
D ata

V1Xd

0 pealyL

&
~

invemt

KTB Vector Table

PCB
KTB
—» PCB$L_INITIAL_KTB
—| PCB$L_KTBVEC
KTB
KTB Vector Table >

llllll

Locating the KTB Using the
PID

IPID
seq# | idx PCB Vector Table
T PcB
j%:—— KTB Vector Table KTB
g
++ L
] KTB

llllll

HP Technology Forum & Expo

Get Connected!
Training | Knowledge | Solutions

¥y "-:_-;:r,'_", I. ,i-
~ 5 A,
e SRR =
e B Lk \

